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Abstract. Non-leading contribution to the pion electromagnetic form factor which comes from the pion
twist-3 wave function is analyzed in the modified hard scattering approach (MHSA) proposed by Li and
Sterman. This contribution is enhanced significantly due to bound state effect (the twist-3 wave function
is independent of the fractional momentum carried by the parton and has a large factor ∼ m2

π/m0 with
mπ being the pion meson mass and m0 being the mean u- and d-quark masses). Consequently, although
it is suppressed by the factor 1/Q2, the twist-3 contribution is comparable with and even larger than the
leading twist (twist-2) contribution at intermediate energy region of Q2 being 2 ∼ 40GeV2.

1 Introduction

There has been a lot of discussions about applying pertur-
bative QCD (pQCD) to exclusive processes at large mo-
mentum transfer [1–15]. Although there is general agree-
ment that pQCD is able to make successful predictions
for the exclusive processes at asymptotic limit (Q2 → ∞),
the applicability of pQCD to these processes at experi-
mentally available Q2 region has been being debated and
attracted much of attention. The difficulties in practical
calculation mainly come from the end-point singularity,
i.e. in the end-point region (x → 0, 1 with x being the
fractional momentum carried by the parton) the virtual-
ity of intermediate states is small and the running couple
constant αs becomes large, thereby perturbation expan-
sion might be illegal. However, perturbative calculation
can be rescued with the help of some techniques to cure
the end-point singularity [8-15], for example, the incorpo-
ration of the transverse structure of the pion wave function
[8–10], the introduction of an effective gluon mass [11] and
a frozen running coupling constant [11,12]. Recently, Li
and Sterman [13,14] proposed a modified hard scattering
approach (MHSA) for the hadronic form factor by taking
into account the customarily neglected partonic transverse
momentum as well as Sudakov corrections. They point out
that pQCD calculation for the pion form factor begins to
be self-consistent at about Q ∼ 20ΛQCD, which is similar
to the conclusion given in [8]. More recently, Ji, Pang and
Szczepaniak [15] arrived at a similar conclusion as [8,13,
14] by analyzing the factorization perturbation formalism
for the pion form factor in the framework of light-cone
time-order perturbative theory. These studies shed light
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on applying pQCD to exclusive processes at intermediate
energy region.

However, there is still a crucial problem which has
not been solved, that is although improved pQCD cal-
culation for the exclusive processes is self-consistent at
currently experimentally accessible energy region, the nu-
merical predictions are generally far smaller than the ex-
perimental data. For example, pQCD prediction for the
pion form factor is

Fπ(Q2 → ∞) = 16παs(Q2)CF

∫
[dx][dy]φ(x)

1
x2y2Q2φ(y)

=
16παs(Q2)f2

π

Q2 , (1)

where [dx] = dx1dx2δ(1 − x1 − x2), [dy] = dy1dy2δ(1 −
y1 − y2), fπ = 93 MeV is the pion decay constant, and
φ(x) is the distribution amplitude of the pion meson. The
asymptotic form for the distribution amplitude has been
employed in obtaining the send expression in (1), since
any distribution amplitudes for the pion meson should ap-
proach the asymptotic form as Q2 → ∞,

φ(as)(x) =
√

3fπx1x2. (2)

Equation (1) gives only 1/3 of the experimental data at
intermediate energy region. Although the Chernyak and
Zhitnitsky (CZ) model for the distribution amplitude

φ(CZ)(x) = 5
√

3fπx1x2(x1 − x2)2 (3)

may enhance the prediction for the pion form factor to
the correct direction, the perturbative calculation with CZ
distribution amplitude has been criticized seriously [6,7]
because the nonperturbative end-point region is much em-
phasized in the CZ model. Recently studies on the pion-
photon transition form factor [16] also show that the pion
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Fig. 1. Twist-2 and twist-3 contributions to the pion
form factor. Each curve is explained in the text

distribution amplitude at currently experimentally avail-
able energy region is much like the asymptotic form but
not the CZ form. Hence, how to match the perturbative
calculation with the experimental data is an interesting is-
sue. There are two possible explanations: one is that non-
perturbative contributions will dominate in this region;
the other is that non-leading order contributions in per-
turbative expansions may be also important in this region.
To make choice between the two possible explanations one
needs to analyze all of the important non-leading contri-
butions carefully. These contributions come from higher-
twist effects, higher order in αs and higher Fock states
etc.. Field, Gupta, Otto and Chang [17] pointed out that
for the pion form factor the contribution from the next-
leading order in αs is about 20% ∼ 30%. Employing the
modified hard scattering approach [13,14], [18] and [19]
considered the transverse momentum effect in the wave
function and found that the transverse momentum de-
pendence in the wave function plays the role to suppress
perturbative prediction. More recently, Tung and Li [20]
reexamine the perturbative calculation for the pion form
factor in the MHSA by respecting the evolution of the pion
wave function in b (the transverse extent of the pion) and
employing the two-loop running coupling constant in the
Sudakov form factor. It is found [20] that the evolution of
the pion wave function in b improves the match of pertur-
bative prediction with the experimental data. However,
in order to answer the question whether the perturbative
calculation is able to make reliable prediction for the ex-
clusive processes at currently experimentally available en-
ergy region, the other non-leading contributions such as
that from higher twist effects and higher Fock states [2,
21] should also be analyzed carefully.

It has been expected that the power corrections to the
pion form factor (∼ 1/Q4) which come form the higher
twist terms of the pion wave function may be important
in the intermediate energy region [22–26] since there is a
large factor ∼ m2

π/m0 (mπ being the pion meson mass and
m0 being the mean u- and d-quark masses) in the twist-3
wave function. However, the calculations for these higher
twist contributions are more difficult than that for the
leading twist (twist-2) because of the end-point singularity
becoming more serious. The leading twist wave functions

in the initial and final states being proportional to x1x2
(x1 and x2 being the fractional momenta carried by the
quark and anti-quark) and y1y2 (see (2)) may cancel the
end-point divergent factor 1/x2y2 coming from the hard-
scattering amplitude. However, the asymptotic behavior
of twist-3 wave function is x- (y-)independent (see (20)),
which has no help at all to cure the end-point singularity.
In this case, Sudakov form factor is expected to be able to
assure the reasonableness of the perturbative calculation.
Unfortunately, the estimations for the twist-3 contribution
in the medium energy region do not agree with each other
[22–26] (see Fig. 1). [23] predicates that

Fπ(Q2) =
16παs(Q2)f2

π

Q2

×
{

1 +
m4

π

Q2m2
0
α−8/9

s (Q2)J2(Q2)
}

(4)

with

J(Q2) =
1
3
[
ln ln(Q2/Λ2

QCD) + a
]
. (5)

The first and second terms in (4) correspond to the leading
twist (twist-2) and next-to-leading twist (twist-3) contri-
butions respectively. In [23] the double logarithmic (DL)
corrections are calculated in the one loop approximation
and it is supposed that the sum of all DL corrections trans-
forms to the exponential function form (Sudakov form fac-
tor). Hence it is argued that the divergent factor 1/x2y2
at x2(y2) → 0 is modified by the following way

1
x2y2

→ 1
x2y2

exp
{−[αs(Q2)/2π]CFL(x2, y2, k⊥, l⊥)

}
, (6)

with

L(x2, y2, k⊥, l⊥) = ln(Q2/k2
⊥)ln(1/x2) − ln2(1/x2)

+ln(Q2/l2⊥)ln(1/y2) − ln2(1/y2)
−ln(1/x2)ln(1/y2) . (7)

It is argued [23] that the integral with function L(x2, y2,
k⊥, l⊥) can not be calculated unambiguously. This uncer-
tainty is incorporated to the factor a being 1 ≤ a ≤ 2
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in the function J(Q2) (5). According to (4), the twist-3
contribution is larger than the asymptotic term (twist-2
contribution) in the region of Q2 ≤ 30 GeV2. Reference
[24] includes the Sudakov corrections in a similar way as
[23] but improved the estimation on the function J(Q2)
and the running mass m(Q2), and gives

Fπ(Q2) =
16παs(Q2)f2

π

Q2

×
[
1 +

m4
π

Q2m2
0

π

6αs(Q2)

(
αs(1GeV2)
αs(Q2)

)8/9]
. (8)

It can be found from (8) that the twist-3 contribution
is larger that the twist-2 contribution at about Q2 ≤
15 GeV2. Reference [25] analyzes the Sudakov effects by
introducing an cut-off on the integral region instead of in-
troducing the transverse momenta k⊥ and l⊥, and gives
another prediction

Fπ(Q2) =
16παs(Q2)f2

π

Q2

×

1 +

m4
π

Q2m2
0

1
6

(
ln

Q2

Λ2
QCD

)8/9

 . (9)

Equation (9) tells us that the twist-3 contribution is about
2 ∼ 0.6 of the leading twist contribution at the energy
region 2 GeV2 ≤ Q2 ≤ 10 GeV2. All of the above cal-
culations (4), (8) and (9) give correct power suppression
(∼ 1/Q2) behavior for the twist-3 contribution in the large
Q2 region, but their predictions for the dependence on
lnQ2 are very different. The main reason for these differ-
ences is that Sudakov corrections are evaluated in different
approximations in [23], [24] and [25]. In the modified hard
scattering approach for the exclusive processes proposed
by Li and Sterman [13,14], the customarily neglected par-
tonic transverse momentum are combined with Sudakov
corrections, and the Sudakov form factor is expressed in a
more convenient space (b-space), which provides an more
reliable and systematical way to evaluate the Sudakov ef-
fect. Li and Sterman’s formalism is originally obtained
for studying the contribution from the leading twist wave
function. We point out that for the pion electromagnetic
form factor the MHSA can be extended to evaluate the
contribution coming from the twist-3 terms of the pion
wave function. One manifest advantage of MHSA is that
there is no other phenomenological parameter but the in-
put wave function need to be adjusted. The purpose of this
work is to analyze the twist-3 wave function contribution
to the pion form factor in the framework of MHSA.

2 Formalism

We first review the derivation of the modified hard-scat-
tering formalism for the leading twist (twist-2) contribu-
tion to the pion form factor [13]. Taking into account the
transverse momenta k⊥ and l⊥ that flow from the wave

functions through the hard scattering leads to a factoriza-
tion form with two wave functions ψ(x,k⊥) and ψ(y, l⊥)
corresponding to the external pions combined with a hard-
scattering function TH(x, y,Q,k⊥, l⊥), which depends in
general on transverse as well as longitudinal momenta,

F (t=2)
π (Q2) =

∫
[dx][dy]

∫
d2k⊥d2l⊥ψ(x,k⊥, P1, µ) (10)

×T (t=2)
H (x, y,Q,k⊥, l⊥, µ)ψ(y, l⊥, P2, µ) ,

where P1 and P2 are the momenta of the incoming and
outgoing pion respectively, Q2 = 2P1 · P2 and µ is the
renormalization and factorization scale. To the lowest or-
der in perturbation theory, the hard-scattering amplitude
T

(t=2)
H is to be calculated from one-gluon-exchange dia-

grams. Neglecting the transverse momentum dependence
in the numerator of T (t=2)

H one can obtain,

T
(t=2)
H (x, y,Q,k⊥, l⊥, µ)

=
16πCFαs(µ)x2Q

2[
x2Q2 + k⊥2] [x2y2Q2 + (k⊥ − l⊥)2]

, (11)

where CF = 4/3 is the color factor and αs(µ) is the QCD
running coupling constant. The first and the second terms
in the denominator come from fermion and gluon propa-
gators respectively.

Equation (10) can be expressed in the b- and h-con-
figurations via Fourier transformation

F (t=2)
π (Q2) =

∫
[dx][dy]

d2b
(2π)2

d2h
(2π)2

ϕ(x,b, P1, µ) (12)

×T (t=2)
H (x, y,Q,b,h, µ)ϕ(y,h, P2, µ) ,

where wave functions ϕ(x,b, P1, µ) and ϕ(y,h, P2, µ) take
into account an infinite summation of higher-order effects
associated with the elastic scattering of the valence par-
tons, which give Sudakov suppressions to the large-b(h)
and small-x(y) regions [13,27,28],

ϕ(ξ,b, P, µ) = exp
[
−s(ξ, b,Q) − s(1 − ξ, b,Q)

−2
∫ µ

1/b

dµ̄

µ̄
γq(g(µ̄))

]
× φ

(
ξ,

1
b

)
. (13)

Here γq = −αs/π is the quark anomalous dimension.
s(ξ, b,Q) is Sudakov exponent factor [13,27,28],

s(ξ, b,Q)

=
A(1)

2β1
q̂ ln

(
q̂

−b̂

)
+
A(2)

4β2
1

(
q̂

−b̂ − 1
)

− A(1)

2β1
(q̂ + b̂)

−A(1)β2

4β3
1
q̂

[
ln(−2b̂) + 1

−b̂ − ln(−2q̂) + 1
−q̂

]

−
(
A(2)

4β2
1

− A(1)

4β1
ln(

1
2
e2γ−1)

)
ln
(
q̂

−b̂

)

+
A(1)β2

8β3
1

[
ln2(2q̂) − ln2(−2b̂)

]
, (14)
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where

q̂ = ln[ξQ/(
√

2Λ)], b̂ = ln(bλ),

β1 =
33 − 2nf

12
, β2 =

153 − 19nf

24
,

A(1) =
4
3
, A(2) =

67
9

− 1
3
π2 − 10

27
nf +

8
3
β1 ln(

1
2
eγ) . (15)

nf is the number of quark flavors and γ is the Euler con-
stant. In the derivation of (14), the one-loop running cou-
pling constant has been employed. It is pointed out [29]
that additional two terms will appear in the s(ξ, b,Q) ex-
pression if the two-loop running coupling constant is used.
The two terms reduce the prediction for the pion form fac-
tor by only a few percent [29] in the intermediate energy
region. So for simplicity, we neglect these terms.

Applying the renormalization group equation to T (t=2)
H

and substituting the explicit expression for T (t=2)
H , one can

obtain the following expression for the pion form factor

F (t=2)
π (Q2) =

∫
[dx][dy]

∫
b db

∫
h dh 16πCFαs(t)x2Q

2

×K0(
√
x2Qh)φ(x, 1/b)φ(y, 1/h)

× [θ(b− h)K0(
√
x2Qb)I0(

√
y2Qh)

+θ(h− b)I0(
√
x2Qb)K0(

√
y2Qh)]

× exp (−S(x, y,Q, b, h, t)) , (16)

where

S(x, y,Q, b, h, t) =

[(
2∑

i=1

s(xi, b, Q) +
2∑

i=1

s(yi, Q, h)

)

− 1
β1

ln
t̂

−b̂ − 1
β1

ln
t̂

−ĥ

]
. (17)

K0 and I0 are the modified Bessel functions of order zero.
t is the largest mass scale appearing in T (t=2)

H ,

t = max (
√
xyQ, 1/b, 1/h) . (18)

If b is small, radiative corrections will be small regard-
less of the values of x because of the small αs. When b
is large and xyQ2 is small, radiative corrections are still
large in T (t=2)

H , but ϕ will suppress these regions. In (16),
φ(x, 1/b) and φ(y, 1/h) are two input “wave functions”
which respect the non-perturbative physics. In the large-
Q2 region, they can be taken as the asymptotic form of
the twist-2 distribution amplitude (2) [13,27,28].

In the above discussion, only the leading twist wave
function is considered. Now, we address the contributions
coming form the twist-3 wave functions. The operators
which contribute to the twist-3 parts of the pion wave
function include γ5 and γ5σµν , and the two matrixes might
mix under the consideration of the evolution equation for
two-quark state in the pseudoscalar channel. It is pointed
out in [23,24] that the twist-3 wave function of pion can
be expressed as

ψ(t=3)(x,k⊥) (19)

' γ5φ3

[
1 − i

2(x1 − x2)
Q2 Pµ

1 σµνP
ν
2 − i

x1x2

k2
⊥
Pµ

1 σµνk
ν
⊥

]
,

where k⊥ is the partonic transverse momentum. φ3 is the
distribution amplitude of twist-3 [22–25],

φ3 =
fπ

4
√
nc

m2
π

m̄(Q2)
, (20)

where mπ = 139 MeV is the pion meson mass and m̄(Q2)
is the mean value of the u- and d-quarks masses at the
scale Q2,

m̄(Q2) =
(
αs(Q2)
αs(µ2

0)

)4/β0

m0(µ2
0), (21)

with β0 = 11 − 2
3nf , and m0(1 GeV2) = 7 ± 2 MeV.

The hard scattering amplitude for the twist-3 wave
function differs from that for the twist-2 wave function,
which turns out to be

T
(t=3)
H (x, y,Q,k⊥, l⊥, µ)

=
64πCFαs(µ)x2[

x2Q2 + k⊥2] [x2y2Q2 + (k⊥ − l⊥)2]
. (22)

Following the derivation for the leading twist wave func-
tion we can obtain the twist-3 contribution to the pion
form factor in the modified hard-scattering approach,

F (t=3)
π (Q2) =

∫
[dx][dy]

∫
bdb

∫
hdh64πCFαs(t)x2

×K0(
√
x2Qh)φ3(x)φ3(y) exp (−S(x, y,Q, b, t))

× [θ(b− h)K0(
√
x2Qb)I0(

√
y2Qh)

+θ(h− b)I0(
√
x2Qb)K0(

√
y2Qh)] . (23)

It can be found that the hard scattering amplitudes T (t=2)
H

(11) and T (t=3)
H (22) are divergent in the end-point region

x, y → 0, k⊥, l⊥ → 0. However, the twist-2 contribution
to the pion form factor can be calculated readily because
the twist-2 wave functions being proportional to x1x2 and
y1y2 respectively cancel the divergent factor 1/x2y2 in the
T

(t=2)
H . Furthermore, the Sudakov corrections also sup-

press the contribution from the end point region. For the
twist-3 contribution, the wave function is a constant in
the whole region of x (see (20)), which has no help at all
to cure the divergent factor 1/x2y2 in the T (t=3)

H . In this
case, the Sudakov form factor may guarantee that the cal-
culation is reliable since the factor e−S rapidly decreases
to zero more rapidly than any power of x(y) at the end-
point region (see (14) and (17)).

3 Numerical result and discussion

We present the numerical evaluations for the twist-2 and
twist-3 contributions to the pion form factor in Fig. 1. The
thinner solid curve is MHSA prediction for the twist-2
contribution (16). The thicker solid curve is twist-3 con-
tribution to the pion form factor obtained in this work
(23), while the dash-dotted is the result of [23] (the sec-
ond term in (4) with a = 1.5). The dotted and dashed



F.-G. Cao et al.: Twist-3 contribution to the pion electromagnetic form factor 505

Q2  (GeV2 )

 Q
2  F

π 
(Q

2  )
   

(G
eV

2  )

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40

Fig. 2. Perturbative prediction for the pion form fac-
tor including both twist-2 (dotted curve) and twist-3
(dashed curve) contributions. The solid curve is the
sum of twist-2 and twist-3 contributions. The data
are taken from [30]

curves are the results given in [24] (the second term in
(8)) and [25] (the second term in (9)) respectively. All of
the calculations given in this work, [23], [24] and [25] show
that compared with the leading twist contribution, the
twist-3 contributions are suppressed by the factor 1/Q2

at asymptotic limit (Q2 → ∞). But the predictions are
different in the medium and lower energy regions. Our re-
sult is much larger than the result of [25] in the energy
region of 2 GeV2 ≤ Q2 ≤ 40 GeV2, and a little larger than
the result of [24] as Q2 ≥ 5 GeV2. Reference [23] and this
work give very similar results in the large-Q2 region, but
our prediction is a little smaller than the result of [23]
at about Q2 ≤ 15 GeV2. The Sudakov corrections are re-
spected systematically in MHSA, while they are evaluated
in various approximations in [23–25], so the prediction
in this work is more reliable. In Fig. 2, we include both
twist-2 and twist-3 contributions (obtained in this work)
to the pion form factor, and compare with the experimen-
tal data. The dotted and dashed curves are twist-2 and
twist-3 contributions respectively, and the solid curve is
the sum. Compared to the leading (twist-2) contribution,
the twist-3 contribution is negligible at asymptotic limit
since it is suppressed by the factor 1/Q2. However, the
twist-3 contribution is comparable with and even larger
than the leading twist contribution at intermediate region
of Q2 (2 GeV2 ≤ Q2 ≤ 40 GeV2). Also it can be found
that the perturbative calculations including both twist-2
and twist-3 contributions are larger than the experiment
data at about Q2 ≤ 5 GeV2. One can expects that the
other nonleading contributions such as those coming form
higher Fock states may be also important at lower energy
regions.

In summary, we analyzed the twist-3 contribution to
the pion electromagnetic form factor in the modified hard
scattering approach in which Sudakov corrections are re-
spected systematically, and compared with various ap-
proximate calculations. It is found that the twist-3 con-
tribution is enhanced significantly since the twist-3 wave
function is independent of the fractional momentum car-
ried by the parton and has a large factor ∼ m2

π/m0, while
the twist-2 wave function is proportional to x1x2 (y1y2)
which cancels the end-point divergent factor 1/x2y2 in the

hard-scattering amplitude. Thus, although it is suppressed
by the factor 1/Q2 as compared with the leading (twist-2)
contribution, the twist-3 contribution is comparable with
and even large than the leading twist contribution at in-
termediate region of Q2 being 2 ∼ 40 GeV2. The pertur-
bative predictions including both twist-2 and twist-3 con-
tributions are larger than the experiment data at lower
energy regions, which indicates the importance to study
the other nonleading corrections at these energy regions.

Acknowledgements. This work partially supported by the Post-
doc Science Foundation of China and the National Natural
Science Foundation of China. F.G. Cao would like to thank
professor B. V. Geshkenbein for providing more inferences for
their work [23], and professor M. V. Terentyev for providing
the preprint/ITEP-45 (1982).

References

1. F.R. Farrar, D.R. Jackson, Phys. Rev. Lett. 43 (1979) 246
2. S.J. Brodsky, G.P. Lepage, Phys. Rev. Lett. 53 (1979) 545;

Phys. Lett. B87 (1979) 359; G.P. Lepage, S.J. Brodsky,
Phys. Rev. D22 (1980) 2157

3. A.V. Efremov, A.V. Radyushkin, Phys. Lett. B94 (1980)
245

4. A. Duncan, A.H. Mueller, Phys. Rev. D21 (1980) 1626
5. C.S. Huang, Phys. Energ. Fortis Et Phys. Nucl. 4 (1980)

761; 6 (1982) 168
6. N. Isgur, C.H. Llewellyn Smith, Phys. Rev. Lett. 52 (1984)

1080; Phys. Lett. B217 (1989) 535; Nucl. Phys. B317
(1989) 526

7. A.V. Radyushkin, Nucl. Phys. A523 (1991) 141c
8. T. Huang, Q.X. Sheng, Z. Phys. C50 (1991) 139
9. Z. Dziembowski, L. Mankiewicz, Phys. Rev. Lett. 58

(1987) 2175
10. F.G. Cao, T. Huang, B.Q. Ma, Phys. Rev. D53 (1996)

6582
11. C.-R. Ji, A.F. Sill, R.M. Lombdar-Nelson, Phys. Rev. D36

(1987) 165; C.-R. Ji, F. Amiri, Phys. Rev. D42 (1990)
3764

12. J.M. Cornwall, Phys. Rev. D26 (1453) 1982
13. H.N. Li, G. Sterman, Nucl. Phys. B381 (1992) 129
14. H.N. Li, Phys. Rev. D48 (1993) 4243



506 F.-G. Cao et al.: Twist-3 contribution to the pion electromagnetic form factor

15. C.-R. Ji, A. Pang, A. Szczepaniak, Phys. Rev. D52 (1995)
4038

16. P. Kroll, M. Raulfs, Phys. Lett. B387 (1996) 848
17. R.D. Field, R. Gupta, S. Otto, L. Chang Nucl. Phys. B186

(1981) 429
18. R. Jakob, P. Kroll, Phys. Lett. B315 (1993) 463; Phys.

Lett. B319 (1993) 545(E)
19. F.G. Cao, T. Huang, Mod. Phys. Lett A13 (1998) 253;

Commun. Theor. Phys. 27 (1997) 217
20. D. Tung, H.N. Li, Chin. J. Phys. 35 (1997) 651
21. F.G. Cao, T. Huang, B.Q. Ma, Phys. Rev. D55 (1997)

7107
22. V.L. Chernyak, A.R. Zhitnitsky, Phys. Rep. 112 (1984)

173

23. B.V. Geshkenbein, M.V. Terentyev, Phys. Lett. B117
(1982) 243; preprint/ITEP-45(1982)

24. B.V. Geshkenbein, M.V. Terentyev, Sov. J. Nucl. Phys. 39
(1984) 554

25. C.S. Huang, Commun. Theor. Phys. 2 (1983) 1265
26. A. Szczepaniak, A.G. Williams, Phys. Lett. B302 (87)

1993; J. Mord. Phys. A11 (1996) 655
27. F.G. Cao, T. Huang, C.W. Luo, Phys. Rev. D52 (1995)

5358
28. J. Botts, G. Sterman, Nucl. Phys. B325 (1989) 62
29. H.N. Li, Phys. Rev. D52 (1995) 3958
30. J. Bebek et al., Phys. Rev. D17 (1978) 1693; S.R. Amen-

dolia et al., Nucl. Phys. B277 (1986) 168


